夹逼定理 也称夹逼准则,是判定极限存在的两个准则之一。如果数列{xn},{yn}及{zn}满足下列条件: (1)yn≤xn≤zn(n=1,2,3,……), (2)lim n→∞ yn =a,lim n→∞ zn =a, 那么数列{xn}的极限存在,且lim n→∞ xn =a。 F(x)与G(x)在Xo连续且存在相同的极限A limF(x)=limG(x)=A 则若有函数f(x)在Xo的某领域内恒有 F(x)≤f(x)≤G(x) 则当X趋近Xo有limF(x)≤limf(x)≤limG(x) 进而有 A≤limf(x)≤A f(Xo)=A 简单的说~函数A>B,函数B>C 函数A的极限是X 函数C的极限也是X 那么函数B的极限就一定是X 这个就是夹逼定理 高等数学内容 【夹逼定理在数列中的运用】 设,为收敛数列,且:当n趋于无穷大时,数列,极限均为:a. 若存在N,使得当n>N时,都有and≤cn≤bn,则数列收敛,且极限为a.