补充前提:{ak}为正项数列
f(n)=((a1)^n+(a2)^n+...+(ak)^n))^(1/n)
lim f(n) = lim ((a1)^n+(a2)^n+...+(ak)^n))^(1/n)
设max{a1,a2...ak}=am,
lim lim ((a1)^n+(a2)^n+...+(ak)^n))^(1/n)
=lim ((am)^n*((a1/am)^n+(a2/am)^n+...+(ak/am)^n)))^(1/n)
=am*lim ((a1/am)^n+(a2/am)^n+...+(ak/am)^n)^(1/n)
lim ((a1/am)^n+(a2/am)^n+...+(ak/am)^n)^(1/n)=1,
所以lim f(n) = lim ((a1)^n+(a2)^n+...+(ak)^n))^(1/n)=am=max{a1,a2...ak}