代数吧 关注:6,078贴子:12,289
  • 6回复贴,共1

sage概型函数译几个

取消只看楼主收藏回复


P.<x, y, z,v,u> = ProjectiveSpace(4, ZZ),定义射影空间
P,P.ngens(),射影空间生成元
P.ambient_spac(),射影空间的环饶空间
P.change_ring(GF(7)),从整数环换到有限域7
P.dimension_absolute(),绝对维数
P.dimension(),维数
P.change_ring(GF(11))再换到有限域11
下面类似就是定义一仿射空间
A.<x, y, z> = AffineSpace(3, ZZ);A;
AQ = A.change_ring(QQ);
AAQ = A.change_ring(GF(5));AAQ;
AQ;A.coordinate_ring(); 座标环,基环不同但生成元总一样
AQ.coordinate_ring();
AAQ.coordinate_ring();
A.coordinate_ring();
A.ambient_space 仿射空间的环饶空间
A.base_scheme();基本概型
AQ.base_scheme();
AAQ.base_scheme();


IP属地:山东1楼2013-03-04 19:30回复
    Spec(ZZ).base_scheme() is Spec(QQ).base_scheme(); 整数环素谱的基本概型等于有理数域素谱的的基本概型
    A.base_morphism();AQ.base_morphism();AAQ.base_morphism() 上面几个基本概型的基本态射
    Scheme morphism: From: Affine Space of dimension 3 over Integer Ring To: Spectrum of Integer Ring Defn: Structure map
    Scheme morphism: From: Affine Space of dimension 3 over Rational Field To: Spectrum of Rational Field Defn: Structure map
    Scheme morphism: From: Affine Space of dimension 3 over Finite Field of size 5 To: Spectrum of Finite Field of size 5 Defn: Structure map


    IP属地:山东2楼2013-03-04 19:37
    回复
      AAQ.identity_morphism(),自态射
      A.dimension_relative(),维度关系
      AQ.dimension_relative(),
      AAQ.dimension_relative(),
      from sage.schemes.generic.point import SchemePoint加载函数库
      P1 = SchemePoint(A);P1;概型的点,很抽象
      P2 = SchemePoint(AQ);P2;
      P3 = SchemePoint(AAQ);P3;
      Point on Affine Space of dimension 3 over Integer Ring
      Point on Affine Space of dimension 3 over Rational Field
      Point on Affine Space of dimension 3 over Finite Field of size 5
      A.gens(),生成元
      AQ.gens(),
      AAQ.gens(),
      P.ngens()生成元个数
      A.is_projective() 判断射影还是仿射空间
      AAQ.rational_points(); 有理点
      [(0, 0, 0), (1, 0, 0), (2, 0, 0), (3, 0, 0), (4, 0, 0), (0, 1, 0), (1, 1, 0), (2, 1, 0), (3, 1, 0), (4, 1, 0), (0, 2, 0), (1, 2, 0), (2, 2, 0), (3, 2, 0), (4, 2, 0), (0, 3, 0), (1, 3, 0), (2, 3, 0), (3, 3, 0), (4, 3, 0), (0, 4, 0), (1, 4, 0), (2, 4, 0), (3, 4, 0), (4, 4, 0), (0, 0, 1), (1, 0, 1), 。。。。。。
      定义子概型,射影的要齐次
      X = A.subscheme([x+1, 1-y^2, x*y^2-5]); X;
      XX = PQ.subscheme([x^3-y^3, y^3+7*x^3, x*y^2]); XX
      Closed subscheme of Affine Space of dimension 3 over Integer Ring defined by: x + 1, -y^2 + 1, x*y^2 - 5
      Closed subscheme of Projective Space of dimension 7 over Finite Field of size 3 defined by: x0^3 - x1^3, x0^3 + x1^3, x0*x1^2


      IP属地:山东4楼2013-03-04 19:48
      回复
        X.defining_polynomials ();定义概型的多项式
        I = X.defining_ideal(); I;定义概型理想
        XX.defining_polynomials ();
        II = XX.defining_ideal(); II;
        (x + 1, -y^2 + 1, x*y^2 - 5)
        Ideal (x + 1, -y^2 + 1, x*y^2 - 5) of Multivariate Polynomial Ring in x, y, z over Integer Ring
        (x0^3 - x1^3, x0^3 + x1^3, x0*x1^2) Ideal (x0^3 - x1^3, x0^3 + x1^3, x0*x1^2) of Multivariate Polynomial Ring in x0, x1, x2, x3, x4, x5, x6, x7 over Finite Field of size 3


        IP属地:山东5楼2013-03-04 19:50
        回复
          一楼不具体定义生成元代表字母,系统默人x1,x2,x3.......
          P = ProjectiveSpace(7, ZZ);
          P;PQ = P.base_extend(GF(3)); PQ;
          P.dimension_absolute();
          PQ.dimension_absolute();
          P.dimension();PQ.dimension();P.dimension_relative();
          PQ.dimension_relative();
          P.gen(1);PQ.gen(3);P.gens()
          ;PQ.gens();P.ngens();
          PQ.is_projective()
          Projective Space of dimension 7 over Integer Ring
          Projective Space of dimension 7 over Finite Field of size 3
          8
          7
          8
          7
          7
          7
          x1
          x3
          (x0, x1, x2, x3, x4, x5, x6, x7)
          (x0, x1, x2, x3, x4, x5, x6, x7)
          8
          True


          IP属地:山东6楼2013-03-04 19:54
          回复
            用在线的不好吗,文档自动保存,下载的在LINUX上才好用,WINDOW的1G多,还要其它的虚拟软件。。


            IP属地:山东8楼2013-03-21 10:47
            收起回复
              以后挪窝了,上GOOGLE网盘和文档,百毒快了。。。。


              IP属地:山东9楼2013-03-21 10:57
              回复