AAQ.identity_morphism(),自态射
A.dimension_relative(),维度关系
AQ.dimension_relative(),
AAQ.dimension_relative(),
from sage.schemes.generic.point import SchemePoint加载函数库
P1 = SchemePoint(A);P1;概型的点,很抽象
P2 = SchemePoint(AQ);P2;
P3 = SchemePoint(AAQ);P3;
Point on Affine Space of dimension 3 over Integer Ring
Point on Affine Space of dimension 3 over Rational Field
Point on Affine Space of dimension 3 over Finite Field of size 5
A.gens(),生成元
AQ.gens(),
AAQ.gens(),
P.ngens()生成元个数
A.is_projective() 判断射影还是仿射空间
AAQ.rational_points(); 有理点
[(0, 0, 0), (1, 0, 0), (2, 0, 0), (3, 0, 0), (4, 0, 0), (0, 1, 0), (1, 1, 0), (2, 1, 0), (3, 1, 0), (4, 1, 0), (0, 2, 0), (1, 2, 0), (2, 2, 0), (3, 2, 0), (4, 2, 0), (0, 3, 0), (1, 3, 0), (2, 3, 0), (3, 3, 0), (4, 3, 0), (0, 4, 0), (1, 4, 0), (2, 4, 0), (3, 4, 0), (4, 4, 0), (0, 0, 1), (1, 0, 1), 。。。。。。
定义子概型,射影的要齐次
X = A.subscheme([x+1, 1-y^2, x*y^2-5]); X;
XX = PQ.subscheme([x^3-y^3, y^3+7*x^3, x*y^2]); XX
Closed subscheme of Affine Space of dimension 3 over Integer Ring defined by: x + 1, -y^2 + 1, x*y^2 - 5
Closed subscheme of Projective Space of dimension 7 over Finite Field of size 3 defined by: x0^3 - x1^3, x0^3 + x1^3, x0*x1^2