11一一吧 关注:222贴子:31,925

数学分支之父

只看楼主收藏回复



IP属地:吉林1楼2013-08-18 10:45回复
    2.非欧几何之父——罗巴切夫斯基
    1893年,在喀山大学树立起了世界上第一个为数学家雕塑的塑像。这位数学家就是俄国的伟大学者、非欧几何的重要创始人——罗巴切夫斯基。
      非欧几何是人类认识史上一个富有创造性的伟大成果,它的创立,不仅带来了近百年来数学的巨大进步,而且对现代物理学、天文学以及人类时空观念的变革都产生了深远的影响。
      不过,这一重要的数学发现在罗巴切夫斯基提出后相当长的一段时间内,不但没能赢得社会的承认和赞美,反而遭到种种歪曲、非难和攻击,使非欧几何这一新理论迟迟得不到学术界的公认。


    IP属地:吉林3楼2013-08-18 10:45
    回复
      5.现代微分几何之父——陈省身
      陈省身,男,1911年10月28日生于浙江嘉兴秀水县,美籍华人,20世纪世界级的几何学家。少年时代即显露数学才华,在其数学生涯中,几经抉择,努力攀登,终成辉煌。他在整体微分几何上的卓越贡献,影响了整个数学的发展,被杨振宁誉为继欧几里德、高斯、黎曼、嘉当之后又一里程碑式的人物。曾先后主持、创办了三大数学研究所,造就了一批世界知名的数学家。晚年情系故园,每年回天津南开大学数学研究所主持工作,培育新人,只为实现心中的一个梦想:使中国成为21世纪的数学大国。


      IP属地:吉林6楼2013-08-18 10:46
      回复
        6.分形几何之父——芒德勃罗
        芒德勃罗因创造了原来根本不存在的分形学科而一举成名。1975年以法文出版《 分形对象: 形、机遇与维数》(Les Objets Fractals:Forme,Hasard et Dimension),1977年以英文出版《分形:形、机遇与维数》 (Fractals:Form,Chance and Dimension),1982年出 版《大自然的分形几何学》。最后一部影响最大,它是分形学科的宣言书, 包罗万象,显示 了将分形用于自然现象描述的重要性。


        IP属地:吉林7楼2013-08-18 10:46
        回复
          7.解析几何之父——笛卡尔
          笛卡儿最杰出的成就是在数学发展上创立了解析几何学。在笛卡儿时代,代数还是一个比较新的学科,几何学的思维还在数学家的头脑中占有统治地位。笛卡儿致力于代数和几何联系起来的研究,于1637年,在创立了坐标系后,成功地创立了解析几何学。他的这一成就为微积分的创立奠定了基础。解析几何直到现在仍是重要的数学方法之一。


          IP属地:吉林8楼2013-08-18 10:47
          回复
            8.画法几何之父——蒙日
             蒙日是19世纪著名的几何学家,他创立了画法几何学,推动了空间解析几何学的独立发展,奠定了空间微分几何学的宽厚基础,创立了偏微分方程的特征理论,引导了纯粹几何学在19世纪的复兴。此外,他在物理学、化学、冶金学、机械学方面也取得了卓越的成就。他的《大炮制造工艺》在机械制造界影响颇大。主要著作有:《曲面的解析式》(1755)、《静力学引论》(1788)、《画法几何学》(1798)、《代数在几何学中的应用》(1802)、《分析在几何学中的应用》(1805)等。


            IP属地:吉林9楼2013-08-18 10:47
            回复
              11.微积分之父——牛顿&莱布尼茨
              (Gottfriend Wilhelm von Leibniz,1646.7.1.—1716.11.14.)德国最重要的自然科学家、数学家、物理学家、历史学家和哲学家,一个举世罕见的科学天才,和牛顿同为微积分的创建人。他博览群书,涉猎百科,对丰富人类的科学知识宝库做出了不可磨灭的贡献。


              IP属地:吉林12楼2013-08-18 10:48
              回复
                13.对数之父——纳皮尔
                约翰·纳皮尔/约翰·奈皮尔(John Napier,1550~1617),苏格兰数学家、神学家,对数的发明者。


                IP属地:吉林14楼2013-08-18 10:48
                回复
                  14.实变函数之父——勒让德
                  勒让德(1752~1833)
                    Legendre,Adrien-Marie
                    法国数学家。1752年9月18日生于巴黎 ,1833 年1月10日卒于同地。1770 年毕业于马萨林学院 。1782 年以外弹道方面的论文获柏林科学院奖。1783年被选为巴黎科学院助理院士,两年后升为院士。1795年当选为法兰西研究院常任院士。1813年继任J.-L.拉格朗日在天文事务所的职位。
                    勒让德的主要研究领域是分析学(尤其是椭圆积分理论)、数论、初等几何与天体力学,取得了许多成果,导致了一系列重要理论的诞生。勒让德是椭圆积分理论奠基人之一。在L.欧拉提出椭圆积分加法定理后的40年中,他是仅有的在这一领域提供重大新结果的数学家。但他未能像N.H.阿贝尔和C.G.J.雅可比那样洞察到关键在于考察椭圆积分的反函数 ,即椭圆函数。在关于天文学的研究中,勒让德引进了著名的“勒让德多项式” ,发现了它的许多性质 。他还研究了B函数和Γ函数,得到了Γ函数的倍量公式。他陈述了最小二乘法,提出了关于二次变分的“勒让德条件”。
                    勒让德对数论的主要贡献是二次互反律,这是同余式论中的一条基本定理。他还是解析数论的先驱者之一,归纳出了素数分布律,促使许多数学家研究这个问题。


                  IP属地:吉林15楼2013-08-18 10:48
                  回复
                    15.四元数之父——哈密顿
                    在对复数长期研究的基础上,哈密顿在1843年正式提出了四元数(quaternion),这是代数学中一项重要成果.


                    IP属地:吉林16楼2013-08-18 10:48
                    收起回复
                      16.李群之父——S.李
                      李代数是挪威数学家S.李(数学家李)在19世纪后期研究连续变换群时引进的一个数学概念,它与李群的研究密切相关。在更早些时候,它曾以含蓄的形式出现在力学中,其先决条件是“无穷小变换”概念,这至少可追溯到微积分的发端时代。可用李代数语言表述的最早事实之一是关于哈密顿方程的积分问题。S.李是从探讨具有r个参数的有限单群的结构开始的,并发现李代数的四种主要类型。法国数学家É.嘉当在1894年的论文中给出变数和参变数在复数域中的全部单李代数的一个完全分类。他和德国数学家基灵都发现,全部单李代数分成4个类型和5个例外代数,É.嘉当还构造出这些例外代数。É.嘉当和德国数学家外尔还用表示论来研究李代数,后者得到一个关键性的结果。“李代数”这个术语是1934年由外尔引进的。随着时间的推移,李代数在数学以及古典力学和量子力学中的地位不断上升。到20世纪80年代,李代数不再仅仅被理解为群论问题线性化的工具,它还是有限群理论及线性代数中许多重要问题的来源。李代数的理论不断得到完善和发展,其理论与方法已渗透到数学和理论物理的许多领域。


                      IP属地:吉林17楼2013-08-18 10:49
                      回复
                        17.极限论之父——维尔斯特拉斯
                        魏尔斯特拉斯的主要贡献在函数论和分析学方面 。在1854年发表的《关于阿贝尔函数理论》的论文中,解决了椭圆积分的逆转问题,引起数学界的重视。1856年发表的《阿贝尔函数理论》进一步解决了椭圆积分的雅可比逆转问题。他还建立了椭圆函数新结构的定理,一致收敛的解析函数项级数的和函数的解析性的定理,圆环上解析函数的级数展开定理(又称洛朗定理)等。他把严格的论证引进分析学,建立了实数理论,引进了现今分析学上通用的极限的ε-δ定义,为分析学的算术化作出重要贡献。在变分法中,他给出了带有参数的函数的变分结构,研究了变分问题的间断解。在微分几何中,研究了测地线和最小曲面;在线性代数中,建立了初等因子理论,并用来简化矩阵。魏尔斯特拉斯一生中培养了很多有成就的学生,其中著名的有C.B.柯瓦列夫斯卡娅、H.A.施瓦兹、I.L.富克斯、G.米塔-列夫勒等。


                        IP属地:吉林18楼2013-08-18 10:49
                        回复
                          19.黎曼几何之父——黎曼
                          黎曼对数学最重要的贡献还在于几何方面,他开创的高维抽象几何的研究,处理几何问题的方法和手段是几何史上一场深刻的革命,他建立了一种全新的后来以其名字命名的几何体系,对现代几何乃至数学和科学各分支的发展都产生了巨大的影响。
                            1854年,黎曼为了取得哥廷根大学编外讲师的资格,对全体教员作了一次演讲,该演讲在其逝世后的两年(1868年)以《关于作为几何学基础的假设》为题出版。演讲中,他对所有已知的几何,包括刚刚诞生的非欧几何之一的双曲几何作了纵贯古今的概要,并提出一种新的几何体系,后人称为黎曼几何。


                          IP属地:吉林20楼2013-08-18 10:50
                          回复
                            20.内蕴几何之父——高斯
                            现在大学里的《微分几何》基本上就是高斯的专著。
                            但是,内蕴几何只是高斯众多研究中的一小部分。


                            IP属地:吉林21楼2013-08-18 10:50
                            回复
                              21.最小二乘法之父——高斯
                              18岁的高斯发现了质数分布定理和最小二乘法。通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。


                              IP属地:吉林22楼2013-08-18 10:50
                              回复