弓弓吧吧 关注:8贴子:922

回复:小知识。。。

取消只看楼主收藏回复

果蝇作为实验材料的优点
 果蝇这种实验材料是1908年在纽约冷泉港卡内基实验室工作的卢茨(F·E·Lutz)向摩尔根推荐的。这是一种常见的果蝇,学名称为“黑腹果蝇”(Drosophila melanogaster)。
  实验材料的选取往往是决定研究工作成功与否的关键,它在遗传学发展史中表现得尤为突出,不仅摩尔根在选用果蝇前后的局面生动地表明了这一点,而且孟德尔选用豌豆,以及后来分子遗传学家们选用真菌、细菌(特别是大肠肝菌)和噬菌体都证明了这一点。可以说,遗传学发展史中,每一次适合实验材料的选取都导致了一次学科发展的飞跃。以哺乳动物为实验材料,饲养管理一般都较复杂,生长期又长,而且由单基因控制的性状少而难寻,所以,一般不适合遗传学理论研究。这也许是遗传学基本定律首先从植物中发现的主要原因。而果蝇体型小,体长不到半厘米;饲养管理容易,既可喂以腐烂的水果,又可配培养基饲料;一个牛奶瓶里可以养上成百只。果蝇繁殖系数高,孵化快,只要1天时间其卵即可孵化成幼虫,2-3天后变成蛹,再过5天就羽化为成虫。从卵到成虫只要10天左右,一年就可以繁殖30代。果蝇的染色体数目少,仅3对常染色体和1对性染色体,便于分析。作遗传分析时,研究者只需用放大镜或显微镜一个个地观察、计数就行了,从而使得劳动量大为减轻。
白眼基因在X染色体上
  在野外采集到的果蝇,眼睛都是红色的,称为“野生型”。1910年5月,摩尔根在实验室里饲养的一群红眼野生型果蝇中,发现了一只白眼果蝇。摩尔根独具慧眼,立刻认识到这只白眼果蝇的巨大价值。晚上他把这只珍贵的白眼果蝇带回家,放进床边的广口瓶里之后,才安心睡觉,白天再把它送回实验室去。在实验室里,摩尔根使这只白眼果蝇(它是雄性的)与尽可能多的野生型红眼雌果蝇交配,十天后产生了1240个子裔,形成了一个庞大的果蝇株系。
  白眼雄蝇与红眼果蝇杂交,子一代全是红眼果蝇。子一代自交,子二代的结果完全是孟德尔式的,其中红眼果蝇2688只,白眼果蝇728只,两者比率约为3.4:1,而约占1/4的白眼果蝇则全是雄性个性。摩尔根的这一结果,以“果蝇的限性遗传”为题发表在1910年7月22日出版的《科学》第32卷第120页上。如果没有后面的结果(白眼果蝇全是雄性),则摩尔根的发现只不过是孟德尔学说的又一例证,说明孟德尔学说也适用于昆虫。而后面的结果表明,白眼基因与性别有关,这里面就有新的东西了。摩尔根在论文中没有急于宣布眼色基因一定与性染色体相关联,只不过说,眼色基因的分离与两条性染色体的分离一致。他在该论文中的解释略显复杂,也存在一些细节上的错误,但结论是正确的。同年及翌年,摩尔根又连续发表了两篇论文,终于把基因与染色体的关系确定无疑地联系在一起了。
  摩尔根指出:如果假定控制眼色的基因位于X染色体上,而Y染色体上则不带控制眼色的等位基因,那么实验结果就能得到完满的解释。红眼基因(+)是显性,带有红眼基因的X染色体用X+表示;白眼基因(w)是隐性,带有白眼基因的X染色体用Xw表示。基因型为XwY的雄果蝇,由于Y染色体上没有控制眼色的基因,隐性基因得以表现,所以是白眼果蝇。当白眼雄果蝇与野生型雌果蝇X+X+杂交,子一代的基因型是X+Xw和X+Y,即雌雄果蝇都为红色复眼,且雌果蝇是杂合体。子一代个体相互交配,结果是在子二代中有3/4是红眼果蝇,1/4是白眼果蝇。雌果蝇全为红色复眼,但其中有一半是纯合体,另一半为杂合体。雄果蝇则红眼、白眼各占一半。
  前面已经谈到,将遗传物质与染色体联系在一起,在耐格里、魏斯曼时就早已有之,鲍维里、德弗里斯和萨顿甚至把这种联系描述得十分详细。但这些人所谈的联系都仅仅是推测,并没有将某一个具体的基因定位在某一条染色体上。摩尔根却做到了这一点,他把红眼等位基因和白眼等位基因定位在X染色体上,并用实验证实这些基因是由X染色体携带着遗传的,这就使基因在染色体上的假说有了坚实的基础,而且还是把一个特定的基因(白眼基因)归属到一条特定的染色体(X染色体)上,更有甚者,这条特定的染色体还与性别有关。


IP属地:江苏23楼2014-05-18 22:15
回复
    第一只白眼果蝇
      白眼果蝇在基因学说的发展史上起了不可估量的作用,以致引起关于最初那只白眼果蝇来历的争论。向摩尔根推荐果蝇作为实验材料的卢茨,曾出版过一本富有魅力的书《多样性的昆虫》(A Lot of Insects)。他在该书中声称:“摩尔根教授访问我们研究所时,我曾对他提及,在我繁衍的一个血统清楚的果蝇株系中,出现了一只白眼果蝇。但因忙于异常翅脉果蝇的研究而无暇顾及白眼果蝇。摩尔根要走了这只活的白眼果蝇并使之繁殖,终于使白眼果蝇在后代重新出现。我讲这些话,绝非自夸。如果我当时意识到那只白眼果蝇会成为价值无比的珍品,也许就不会把它赠送给别人了。然而,我是把它送给了一位杰出的研究者。实际上,黑腹果蝇(Drosophila melanogaster)应该称为摩尔根的遗传果蝇。”
    摩尔根不承认最初这只活的白眼果蝇来自卢茨,一个相信卢茨的读者在美国《遗传杂志》上发表对卢茨一书的书评,摩尔根立即作出了回答,但却是略带暖昧的回答。他写道,自己确实向卢茨要过果蝇的饲养品系,但是,其中并没有卢茨所说的白眼果蝇,卢茨虽然发现过一只白眼果蝇,但当时就是死的;也不包括白眼果蝇的先代。如果先代中带有白眼果蝇基因,虽然先代本身是红眼,但后裔中总有可能分离出白眼果蝇来。实际上,卢茨所赠的果蝇株系,其后代中未出过白眼果蝇。后来也了解,白眼是果蝇中最常见的一种突变型。“与应用这一突变型材料作出科学发现相比较,发现白眼突变型本身则并不是那么重要”。
      上述摩尔根所说的最后这一句话无疑是对的,且不论最初那只白眼果蝇的来历如何,摩尔根以它作为实验材料,在遗传学史上第一次证明了基因位于染色体上,并且发现了伴性遗传规律。因此,这个白眼果蝇的故事不仅仅是一个戏剧性的插曲,而是值得大书特书的一项重大的研究进展,它开创了摩尔根基因学说的先河。


    IP属地:江苏24楼2014-05-18 22:16
    回复
      基因探针
      基因探针(probe)就是一段与目的基因或DNA互补的特异核苷酸序列,它可以包括整个基因,也可以仅仅是/基因的一部分;可以是DNA本身,也可以是由之转录而来的RNA。
        DNA探针是最常用的核酸探针,指长度在几百碱基对以上的双链DNA或单链DNA探针。现已获得DNA探针数量很多,有细菌、病毒、原虫、真菌、动物和人类细胞DNA探针。双链的DNA探针在应用前必须变为单链,一般采用加热的方法使双链DNA探针变性,原为单链的寡聚核苷酸和无需变性处理即可使用。
        RNA探针是一类很有前途的核酸探针,由于RNA是单链分子,所以它与靶序列的杂交反应效率极高。早期采用的RNA探针是细胞mRNA探针和病毒RNA探针,这些RNA是在细胞基因转录或病毒复制过程中得到标记的,标记效率往往不高,且受到多种因素的制约。这类RNA探针主要用于研究目的,而不是用于检测。例如,在筛选逆转录病毒人类免疫缺陷病毒(HIV)的基因组DNA克隆时,因无DNA探针可利用,就利用HIV的全套标记mRNA作为探针,成功地筛选到多株HIV基因组DNA克隆。又如进行中的转录分析(nuclear run on transcrip-tion assay)时,在体外将细胞核分离出来,然后在α-32P-ATP的存在下进行转录,所合成mR-NA均掺入同位素而得到标记,此混合mRNA与固定于硝酸纤维素滤膜上的某一特定的基因的DNA进行杂交,便可反映出该基因的转录状态,这是一种反向探针实验技术。
        具有放射性或非放射性标记的寡核苷酸,用于从大量核酸样品中找出互补的目标序列,然后用放射自显影或其他显色法(如连接的酶作用于可显色底物)显示目标序列所在位置。
        是经放射性或非放射性等物质标记的已知或特定的DNA或RNA片段,目前主要以同位素、地高辛或辣根过氧化酶等标记核酸探针。
        1.探针的来源: RNA探针可由转录得来,DNA探针根据其来源有3种:一种来自基因组中有关的基因本身,称为基因组探针(genomic probe);另一种是从相应的基因转录获得了mRNA,再通过逆转录得到的探针,称为cDNa 探针(cDNa probe)。与基因组探针不同的是,cDNA探针不含有内含子序列。此外,还可在体外人工合成碱基数不多的与基因序列互补的DNA片段,称为寡核苷酸探针。
        2.探针的制备 进行分子突变需要大量的探针拷贝,后者一般是通过分子克隆(molecular cloning)获得的。克隆是指用无性繁殖方法获得同一个体、细胞或分子的大量复制品。当制备基因组DNA探针进,应先制备基因组文库,即把基因组 DNA打断,或用限制性酶作不完全水解,得到许多大小不等的随机片段,将这些片段体外重组到运载体(噬菌体、质粒等)中去,再将后者转染适当的宿主细胞如大肠肝菌,这时在固体培养基上可以得到许多携带有不同DNA片段的克隆噬菌斑,通过原位杂交,从中可筛出含有目的基因片段的克隆,然后通过细胞扩增,制备出大量的探针。
        为了制备cDNA 探针,首先需分离纯化相应mRNA,这从含有大量mRNA的组织、细胞中比较容易做到,如从造血细胞中制备α或β珠蛋白mRNA。有了mRNA作模板后,在逆转录酶的作用下,就可以合成与之互补的DNA(即cDNA),cDNA与待测基因的编码区有完全相同的碱基顺序,但内含子已在加工过程中切除。
        寡核苷酸探针是人工合成的,与已知基因DNA互补的,长度可从十几到几十个核苷酸的片段。如仅知蛋白质的氨基酸顺序量,也可以按氨基酸的密码推导出核苷酸序列,并用化学方法合成。
        3.探针的标记为了确定探针是否与相应的基因组DNA杂交,有必要对探针加以标记,以便在结合部位获得可识别的信号,通常采用放射性同位素32P标记探针的某种核苷酸α 磷酸基。但近年来已发展了一些用非同位素如生物素、地高辛配体等作为标记物的方法。但都不及同位素敏感。非同位素标记的优点是保存时间较长,而且避免了同位素的污染。最常用的探针标记法是缺口平移法(nick translation)。首先用适当浓度的DNA酶Ⅰ(DNAseⅠ)在探针DNA双链上造成缺口,然后再借助于DNA聚合酶Ⅰ(DNa poly merasⅠ)的5’→3’的外切酶活性,切去带有5’磷酸的核苷酸;同时又利用该酶的5’→3’聚酶活性,使32P标记的互补核苷酸补入缺口,DNA聚合酶Ⅰ的这两种活性的交替作用,使缺口不断向3’的方向移动,同时DNA链上的核苷酸不断为32P标记的核苷酸所取代。
        探针的标记也可以采用随机引物法,即向变性的探针溶液加入6个核苷酸的随机DNA小片段,作为引物,当后者与单链DNA互补结合后,按碱基互补原则不断在其3’OH端添加同位素标记的单核苷酸,这样也可以获得比放射性很高的DNA探针。


      IP属地:江苏25楼2014-05-18 22:17
      回复
        为什么原核生物的限制酶不切割自己的DNA?
        原核生物容易受到自然界外源DNA的入侵如噬菌体,在长期的进化过程中原核生物形成了一套完善的防御机制,以保持自身遗传的相对稳定性。当外源DNA侵入后,限制酶就将其切割掉,使外源DNA不能发挥遗传效应,而且限制酶往往与一种甲基化酶同时成对存在,它们具有相同的底物专一性,具有识别相同碱基序列能力。甲基化酶的甲基供体为S-腺苷甲硫氨酸,甲基受体为DNA上的腺嘌呤与胞嘧啶。当限制酶作用位点上的某一些碱基被甲基化修饰后,限制酶就不能再降解这种DNA了。这样在含有某种限制酶的原核生物的细胞中,其DNA分子中不具备这种限制酶的识别切割序列,或者通过甲基化酶将甲基转移到所识别序列的碱基上,使限制酶不能将其切开。所以限制酶只降解外源入侵的异种DNA,而不分解自身DNA,在解除外源DNA遗传干扰的同时又保护了自身遗传特性的稳定。


        IP属地:江苏26楼2014-05-18 22:18
        回复
          教材易错易混辨析
          1. 病毒属于生命系统吗?
          答案 :不属于。病毒没有细胞结构,细胞是生命系统的基本单位。
          2.病毒是原核生物吗?
          答案: 不是。病毒没有细胞结构,主要由蛋白质和核酸构成。
          3.显微镜使用过程中,能调节通光孔大小吗?
          答案 不能。通光孔是位于显微镜载物台上的固定孔道。
          4.由低倍镜换成高倍镜时,需使用粗准焦螺旋吗?
          答案 不是。直接旋转转换器即可换上高倍物镜。
          5.动物体干重最多的元素是O吗?
          答案 不是。动物体中蛋白质多,糖类少,故干重中C最多,而植物相反。
          6.碳是生命的核心元素吗?
          答案 是。碳能够通过化学键连接成链或环,从而形成各种生物大分子。
          7.晒干的种子中有水吗?
          答案 有。晒干的种子中的水少量以自由水存在,大量以结合水形式存在。
          8.一条肽链只含一个游离的氨基、一个游离的羧基吗?
          答案 不一定。在R基上可能含有。一条肽链至少含一个游离的氨基、一个游离的羧基。
          9.蛋白质是生命活动的体现者吗?
          答案 不是。蛋白质是生命活动的承担者,控制者是基因。
          10.蛋白质都是由20种氨基酸合成的吗?
          答案 不是。蛋白质不同,利用的氨基酸可能不同。
          11.核酸是一切生物的遗传物质吗?
          答案 是。
          12.具有细胞结构的生物,遗传物质都是DNA吗?
          答案 是。只有少数病毒遗传物质是RNA。
          13.小麦、噬菌体、烟草花叶病毒的遗传物质构成的碱基相同吗?
          答案 不同。小麦、噬菌体的遗传物质(DNA)构成的碱基是A、T、G、C,烟草花叶病毒的遗传物质(RNA)构成的碱基是A、U、G、C。
          14.脱氧核糖不含氧元素吗?
          答案 含。核糖经脱氧形成脱氧核糖,但脱氧核糖仍含氧元素。
          15.DNA的多样性是生物多样性直接决定原因吗?
          答案 不是。决定生物多样性的直接原因是蛋白质多样性,根本原因是DNA多样性。
          16.DNA上特定的脱氧核苷酸排列顺序代表特定的遗传信息吗?
          答案 代表。
          17.糖类和脂质都是由C、H、O构成的吗?
          答案 不是。某些脂质还含有P和N。脂质中的脂肪是由C、H、O构成的。
          18.观察DNA和RNA在细胞中的分布实验中,能选植物叶肉细胞吗?
          答案 不能。避免叶绿体中色素的干扰。
          19.双缩脲试剂是直接混合后使用吗?
          答案 不是。先加A液再加B液。
          20.斐林试剂和双缩脲试剂成分相同吗?
          答案 相同。都含有NaOH、CuSO4两种成分。
          21.光学显微镜下,能看见植物细胞的细胞膜吗?
          答案 能。在植物细胞发生质壁分离时,能看到。
          22.线粒体、叶绿体都是内膜面积大于外膜吗?
          答案 不是。叶绿体的外膜面积大于内膜。


          IP属地:江苏27楼2014-05-18 22:20
          回复
            有性生殖只是指两性生殖细胞结合的生殖吗?
            把只有两性生殖细胞的结合才叫有性生殖是对有性生殖的狭义认识。自然界中孤雌和孤雄生殖过程中,虽然都未出现两性生殖细胞结合,但两者也是有性生殖。蜜蜂中的公蜂是由卵细胞直接发育的,植物的花药也可以通过花药离体培养而得到本物种的单倍体。虽然以上两者在繁殖后代过程中没有两性生殖细胞的结合,但子代是由亲代经减数分裂产生的配子发育而来,亲代和子代之间的遗传物质存在显著差异,这样的繁殖过程也是有性生殖。


            IP属地:江苏28楼2014-05-18 22:21
            回复
              人体中肌糖原为何不能直接转变成葡萄糖?
              糖原的分解首先都要形成葡萄糖-1-磷酸,葡萄糖-1-磷酸必须转变成葡萄糖-6-磷酸才能可能参加糖酵解或转变成游离的葡萄糖。葡萄糖-6-磷酸水解为葡萄糖需要专一性的酶——葡萄糖-6-磷酸酶,该酶存在于肝细胞、肾细胞及肠细胞光滑内质网膜的内腔面,脑细胞和肌细胞都无此酶。当血糖含量降低时,葡萄糖-6-磷酸通过转运蛋白进入内质网腔,立即在内质网腔的葡萄糖-6-磷酸酶的作用下水解为磷酸和游离的葡萄糖,二者分别通过相关的转运蛋白运送到细胞溶胶中,其中,游离的葡萄糖能够迅速扩散出肝细胞进入血液,维持血糖浓度的相对稳定。
                可见,葡萄糖-6-磷酸的去向取决于它是在骨胳肌细胞内产生,还是在肝细胞等内产生。由于肌细胞中没有葡萄糖-6-磷酸酶,由肌糖原经葡萄糖-1-磷酸形成的葡萄糖-6-磷酸将进入糖酵解途径,而在肝细胞中,由肝糖原经葡萄糖-1-磷酸形成的葡萄糖-6-磷酸既可以进入糖酵解途径,也可以被葡萄糖-6-磷酸酶水解为葡萄糖。葡萄糖与肝糖原之所以能够互相转变,而葡萄糖与肌糖原不能互相转化的原因就在于前者细胞中有葡萄糖-6-磷酸酶,后者细胞中没有此酶。


              IP属地:江苏29楼2014-05-18 22:23
              回复
                哺乳动物成熟红细胞的呼吸方式
                哺乳动物的成熟红细胞结构很特殊,既没有细胞核也无线粒体、核糖体等各种细胞器,却富含血红蛋白,这种结构特点与其运输O2的功能是相适应的。
                因为无线粒体,红细胞进行无氧呼吸供能。有些学生对此产生疑问:红细胞本身携带O2,却进行无氧呼吸供能,有O2存在时,其无氧呼吸不会受抑制吗?并列举如下理由:①很多种厌氧型的细菌若生活在空气中,其无氧呼吸受到抑制,不能正常生存。②酵母菌等兼性厌氧型的生物生活在氧气充足的环境中进行有氧呼吸,在缺氧的条件下才进行无氧呼吸。
                首先明确并不是所有厌氧型的生物都不能生活在有氧环境中,只有那些严格厌氧菌才不能生活在空气中(如光合细菌,产甲烷杆菌等),而耐氧性厌氧菌是可以生活在空气中的。厌氧菌能否生活在空气中,与其体内是否含有超氧化物歧化酶(SOD)和过氧化氢酶(或过氧化物酶)有关。细胞代谢过程中会产生自由基,自由基是指那些带有奇数电子数的化学物质,它们都带有未配对的自由电子,具有高度的化学活性。在O2存在时还会产生超氧阴离子自由基,它是活性氧的形式之一,性质极不稳定,化学反应能力极强,在细胞内可破坏各种重要生物大分子和膜结构,还可形成其他活性氧化物,故对生物体极其有害。好氧性生物或耐氧性厌氧菌细胞内可合成SOD和过氧化氢酶(或过氧化物酶),超氧阴离子自由基在SOD作用下被歧化成H2O2,在过氧化氢酶作用下H2O2又进一步转变成无毒的H2O,而严格厌氧菌不能合成SOD,在有O2存在时,由于无法歧化超氧阴离子自由基而身受毒害,无法生存。
                红细胞内存在这两种酶(红细胞未成熟前已合成),生活在有氧环境中,不会受自由基的危害而抑制其代谢活动。
                酵母菌等兼性厌氧型的生物,在缺氧的条件下进行无氧呼吸,当氧气充足时进行有氧呼吸,其无氧呼吸将会受到抑制。为什么在O2充足时,酵母菌的无氧呼吸会受到抑制呢?已知磷酸果糖激酶是无氧呼吸(糖酵解)过程中关键的限速酶,ATP对磷酸果糖激酶具有抑制作用,在有柠檬酸、脂肪酸时会加强抑制效应,而ADP、AMP、无机磷则对此酶有激活作用,酵母菌有氧呼吸会产生较多的ATP,使ATP/ADP比值增高,无机磷相对减少,有氧呼吸过程中还会使柠檬酸等物质增多,最终抑制了磷酸果糖激酶的活性,同时NADH进入线粒体中被有氧呼吸消耗,不能还原乙醛生成乙醇,还会使糖酵解过程中的NAD和NADH不能发生周转,也影响了糖酵解速度。
                由以上可知,抑制无氧呼吸的直接原因,是生物细胞进行了有氧呼吸,在有氧呼吸的过程中发生的物质变化抑制了无氧呼吸的进行,并不是由于O2的存在直接抑制了无氧呼吸。成熟的红细胞内由于缺乏有氧呼吸酶系,不能进行有氧呼吸,所以红细胞尽管携带较多的O2也不会抑制其无氧呼吸。
                红细胞进行无氧呼吸是与其运输O2的功能相适应的,因其结合和携带O2的过程中并不消耗O?2,从而有效地提高了运输O2的效率。红细胞自身生命活动所消耗能量并不多,其无氧呼吸产生能量主要是保证细胞膜上离子泵的正常运转,使红细胞维持细胞内高钾、低钙和低钠的状态,还能保证低铁血红蛋白不被氧化。(若血红蛋白中的Fe2+被氧化为Fe3+,形成高铁血红蛋白,高铁血红蛋白中的Fe3+与O2的结合非常牢固,O2不能被释放出来,会造成组织细胞缺氧)。红细胞的以上特点是哺乳动物在长期进化过程中逐渐形成的。


                IP属地:江苏30楼2014-05-18 22:25
                回复