Quantum Mechanics 13 - Schrodinger Wave Equation
Speaker(s): rīchard Epp
Abstract: A “derīvation” of the Schrodinger wave equation based on simple calculus.
Learning Outcomes:
• How to express the de Broglie wave of a free particle, i.e. a complex traveling wave, in terms of the particle’s energy and momentum, and how to differentiate this wave with respect to its space and time varīables (x and t).
• How to combine the above mathematical results with the Newtonian expression for the total energy of a particle to get Schrodinger’s wave equation.
• Dirac’s extension of these ideas to Einstein’s expression for the total energy of a particle: introduction to spin, antimatter, and the Standard Model of particle physics.